



# International Nature Education and Experience

**Training Programmes** 

College of Natural Resources Royal University of Bhutan Lobesa, Punakha, Bhutan

The syllabus of this progrme may change from time to time based on emerging needs, learning conditions, experiences and resources.

Copyright ©: College of Natural Resources, <u>www.cnr.edu.bt</u>

## Contents

| Overview                                                                  | 1   |
|---------------------------------------------------------------------------|-----|
| Training One: Learning Statistics using R                                 | 2   |
| Training Two: Organic Agriculture                                         | . 5 |
| Training Three: Community-Based Forestry for Conservation and Livelihoods | 9   |
| Training Four: Biodiversity Conservation Techniques                       | 13  |
| Training Five: Climate-smart Agriculture using Geospatial Technologies    | 17  |





## Overview

The International Nature Education and Experience (INEE), College of Natural Resources, Royal University of Bhutan, conducts comprehensive trainings in areas of biodiversity, natural resources, climate-smart agriculture, organic agriculture, and statistical analysis using R. The biodiversity training programme emphasizes hands-on activities, field surveys, and practical exercises, fostering skills in biodiversity monitoring and habitat restoration. Natural resources management training covers sustainable practices such as water conservation, soil health improvement, and responsible forest management. Climate-smart agriculture programme provide participants with practical insights into climate-resilient farming practices, including water-efficient irrigation and precision agriculture. The organic agriculture training focuses on environmentally-friendly farming methods, enriching soil health, and pest management without synthetic chemicals. Additionally, the training includes a module on R statistics, offering participants the skills to conduct statistical analysis for research in biodiversity, natural resources, and agriculture. Through hands-on, field, and practical training, the College of Natural Resources equips participants to contribute effectively to environmental conservation, sustainable agriculture, and data-driven decision-making in Bhutan and beyond.

The College provides the following trainings:

- 1. Learning Statistics using R
- 2. Organic Agriculture
- 3. Community-based Forestry for Conservation and Livelihoods
- 4. Biodiversity Conservation Techniques
- 5. Climate-smart Agriculture using Geospatial Technologies





# Training One: Learning Statistics using R

| Training        | : Learning Statistics using R           |
|-----------------|-----------------------------------------|
| Course Director | : Jigme Tenzin (jtenzin.cnr@rub.edu.bt) |
| Duration        | : One Week                              |

## **Training Overview**

This training provides participants with a comprehensive understanding of the R progrming language and its use in data visualization and statistical analysis. It will cover basic syntax in R progrming, types of data, visualization, and statistical inference. The course also emphasizes reproducible research practices and the use of R Markdown or Quarto for publishing high-quality reports, documents, or publications. This training includes hands-on lab exercises to equip with R progrming, visualization, and statistics.

## Learning Outcomes

On completion of the course, participants will be able to:

- 1. Explain the basics of R as a progrming language and statistical software.
- 2. Identify and work with different data types and structures in R, including vectors, matrices, and data fres.
- 3. Apply subsetting and manipulation techniques to explore and analyze data in R.
- 4. Create and customize various types of plots using basic and advanced plotting functions in R.
- 5. Calculate and interpret summary statistics and measures of correlation and explore data distributions using R.
- 6. Apply inferential statistics techniques such as hypothesis testing, regression analysis, and nonparetric statistics to analyze and interpret data in R.

| Time        | Day 1: Introduction to R progrming language    | Facilitator      |
|-------------|------------------------------------------------|------------------|
|             | Registration and welcome, opening, setting the |                  |
| 08:45–09:00 | stage and participants introduction            |                  |
|             | Overview of R as a progrming language and      | Dr. Jigme Tenzin |
| 09:00–10:15 | statistical software                           |                  |
| 10:15–10:30 | Break                                          |                  |

| 10:30–12:00 | Installation and setup of R and RStudio              | Dr. Jigme Tenzin |
|-------------|------------------------------------------------------|------------------|
| 12:00–13:00 | User Interface                                       | Dr. Jigme Tenzin |
| 13:00–14:00 | Lunch Break                                          |                  |
| 14:00–14:30 | Basic syntax and commands, scripts, packages         | Dr. Jigme Tenzin |
|             | Lab 1: Basic syntax and commands, scripts, and       | Dr. Jigme Tenzin |
| 14:30–15:00 | packages                                             |                  |
| 15:00–15:15 | Break                                                |                  |
| 15:15–15:45 | Data types                                           | Dr. Jigme Tenzin |
| 15:45–17:00 | Lab 2: Data types                                    | Dr. Jigme Tenzin |
| Time        | Day 2: Exploratory Data Analysis                     |                  |
| 09:00–10:15 | Using inbuilt dataset to explore data                | Tenzin Wangchuk  |
| 10:15–10:30 | Break                                                |                  |
|             | Data import and manipulation (subset, select,        | Tenzin Wangchuk  |
| 10:30–12:00 | mutate)                                              |                  |
|             | Lab 3: Data import and manipulation (subset, select, | Tenzin Wangchuk  |
| 12:00–13:00 | mutate)                                              |                  |
| 13:00–14:00 | Lunch Break                                          |                  |
|             | Introduction to Tidyverse package to manipulate      | Tenzin Wangchuk  |
| 14:00–14:30 | data                                                 |                  |
| 14:30–15:00 | Lab 4: Using Tidyverse to manipulate data            | Tenzin Wangchuk  |
| 15:00–15:15 | Break                                                |                  |
| 15:15–15:45 | Data cleaning and preprocessing                      | Tenzin Wangchuk  |
| 15:45–17:00 | Lab 5: Data cleaning and preprocessing               | Tenzin Wangchuk  |

| Time         | Day 3: Data Visualization                        |                  |
|--------------|--------------------------------------------------|------------------|
| 09:00–10:15  | Data visualization in base R and ggplot2         | Ugyen Dorji      |
| 10:15–10:30  | Break                                            |                  |
| 10:30–12:00  | Lab 6: Base R plotting                           | Ugyen Dorji      |
| 12:00–13:00  | Lab 7: Plotting with ggpot2                      | Ugyen Dorji      |
| 13:00–14:00  | Lunch Break                                      |                  |
| 14:00–14:15  | Descriptive statistics                           | Ugyen Dorji      |
| 14:15–15:00  | Lab 8: Descriptive statistics                    |                  |
| 15:00–15:15  | Break                                            |                  |
| 15:15–17:00  | Lab 9: Descriptive statistics                    | Ugyen Dorji      |
|              |                                                  |                  |
| Time         | Day 4: Inference from the data                   |                  |
| 09:00- 9:15  | Introduction to inferential statistics           | Dr. Jigme Tenzin |
|              | Lab 6: Correlation (tables, Pearson correlation, | Dr. Jigme Tenzin |
| 09:15 –10:15 | Spearman's rank correlation, Chi-square test)    |                  |
| 10:15–11:45  | Break                                            |                  |

| 11:45 –13:00  | Hypothesis testing                                        | Dr. Jigme Tenzin |
|---------------|-----------------------------------------------------------|------------------|
| 13:00 -14:00  | Lunch Break                                               |                  |
| 14:00 -15:00  | Lab 7: <i>t</i> -test, ANOVA, ANCOVA                      | Dr. Jigme Tenzin |
| 05:00 –15:15  | Break                                                     |                  |
| 15:15 –16:00  | Non-paretric statistics                                   | Tenzin Wangchuk  |
| 16:00 –17:00  | Lab 8: Wilcoxon test, Kruskal-Walli's test, Friedman test | Tenzin Wangchuk  |
|               |                                                           |                  |
| Time          | Day 5: Inference from the data                            |                  |
|               | Introduction to simple linear regression and multiple     | Ugyen Dorji      |
| 09:00 –9:15   | linear regression                                         |                  |
|               | Lab 8: Simple linear regression and multiple linear       | Ugyen Dorji      |
| 09:15 -10:15  | regression                                                |                  |
| 10:15 –10::30 | Break                                                     |                  |
| 10:30 -11:00  | Reproducible research and reporting                       | Dr. Jigme Tenzin |
|               | Lab 9: R markdown and quarto for reproducible             | Dr. Jigme Tenzin |
| 11:10 –13:00  | research                                                  |                  |
| 13:00 -14:00  | Lunch Break                                               |                  |
| 14:00 –15:45  | Lab 10: Data analysis report and documentation            | Dr. Jigme Tenzin |
| 15:45 –16:00  | Break                                                     |                  |
| 16:00 –16: 40 | Training evaluation                                       |                  |
| 16:40 -17:00  | Training Closure                                          |                  |

Laptop/Desktop, R, R Studio

#### **Reading Materials**

Bryan, J., & von der Heyde, M. (2018). *Happy Git and GitHub for the useR.* (Version 3.0). Retrieved from <u>https://happygitwithr.com/</u>

Dalgaard, P. (2008). Introductory statistics with R. Springer Science & Business Media.

- Diez, D. M., Barr, C. D., & Cetinkaya-Rundel, M. (2012). *OpenIntro statistics*. Boston, MA, USA:: OpenIntro. Retrieved from <u>https://www.openintro.org/book/os/</u>
- Wickh, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). *R for data science*. O'Reilly Media, Inc. Retrieved from <u>https://r4ds.hadley.nz/</u>
- Xie, Y., Allaire, J. J., & Grolemund, G. (2018). *R markdown: The definitive guide*. Chaan and Hall/CRC. Retrieved from <u>https://bookdown.org/yihui/rmarkdown/</u>





# **Training Two: Organic Agriculture**

Course Director: Tenzin Wangchuk (tenzin.cnr@rub.edu.bt)Training Duration: One week

#### Training overview

The week-long training on Organic Agriculture (OA) covers various aspects of organic farming, including its definition, principles, historical context, benefits, and challenges. The training also delves into the regulatory bodies involved in organic standards, organic certificate, certification process, and documentation management. Additionally, the participants will learn about organic soil fertility management techniques, including soil testing and analysis, different organic fertilizers, composting, crop rotation, nutrient management plans, and bio-fertilizers. The training also covers plant protection in organic farming, including identifying common weeds, pests, and diseases, understanding their life cycles, and developing a plant protection plan. The training culminates in a field visit to a nearby OA farm, followed by feedback/evaluation and certificate distribution.

#### Learning outcomes

At the end of the training, the participants will be able to:

- 1. Understand the principles of organic agriculture, as well as its evolution, need, and drivers.
- 2. Comprehend the benefits and challenges of organic farming.
- 3. Filiarize with the different organic standards and certifications, regulatory bodies, and the certification process.
- 4. Learn about the soil and nutrient management techniques in organic farming.
- 5. Gain knowledge on plant protection in organic agriculture.

| Time         | Day 1: Introduction to OA                                                           | Facilitator(s)  |
|--------------|-------------------------------------------------------------------------------------|-----------------|
| 08:45 –09:15 | Registration and welcome, opening, setting the stage and participants introduction  | Tenzin Wangchuk |
| 09:15 –10:15 | Definition and principles of organic agriculture                                    | Sonam Tashi     |
| 10:15 –11:45 | Break                                                                               |                 |
| 10:45 –13:00 | Historical context and evolution of organic farming<br>Need for OA<br>Drivers of OA | Sonam Tashi     |
| 13:00 -14:00 | Lunch Break                                                                         |                 |

| 14:00 –15:00 | <ul> <li>Benefits of organic farming</li> <li>Food safety and health</li> <li>Soil/water/environment health</li> </ul>                           | Sonam Tashi                       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 15:00 –15:15 | Break                                                                                                                                            |                                   |
| 15:15 –15:45 | Challenges in organic farming <ul> <li>Inputs/production related</li> <li>Documentation/certification related</li> <li>Market related</li> </ul> | Sonam Tashi                       |
| 15:45 –16:45 | Debate on OA Vs Conventional agriculture                                                                                                         | Sonam<br>Tashi/Tenzin<br>Wangchuk |
| 16:45 -17:00 | Question and answer session                                                                                                                      |                                   |

| Time          | Day 2: Standards and Certifications in Organic<br>Farming                                                                                                                                                                                                        |                     |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 09:00 –9:15   | Reflection                                                                                                                                                                                                                                                       | Tenzin Wangchuk     |
| 09:15 –10:15  | <ul> <li>Standards in OA</li> <li>Definition of organic standards</li> <li>Importance of standards in organic farming</li> <li>Overview of different organic standards</li> </ul>                                                                                | Expert from<br>NCOA |
| 10:15 –11:45  | Break                                                                                                                                                                                                                                                            |                     |
| 10:45 –12:00  | Benefits and challenges of organic certification                                                                                                                                                                                                                 | Expert from<br>NCOA |
| 12:00 –13:00  | Regulatory bodies involved in organic certification                                                                                                                                                                                                              | Expert from<br>NCOA |
| 13:00 - 14:00 | Lunch Break                                                                                                                                                                                                                                                      |                     |
| 14:00 –17:00  | Organic certification process and documentation <ul> <li>Understanding organic certification requirements</li> <li>Documentation required for organic certification</li> <li>Inspection and audit processes</li> <li>Record-keeping and documentation</li> </ul> | Expert from<br>NCOA |
|               | Organic certification and market opportunities                                                                                                                                                                                                                   |                     |

| Time          | Day 3: Soil and Nutrient management                                 |                 |
|---------------|---------------------------------------------------------------------|-----------------|
|               | Recap from the previous day and reflection on key                   | Tenzin Wangchuk |
| 09:00 –9:15   | insights                                                            |                 |
|               | Importance of soil fertility in organic farming                     |                 |
|               | Soli nutrient management techniques in organic farming              | Mahaah          |
| 00.15 10.15   | • Soli lesulty and analysis                                         | Chimirov/       |
| 09:15 -10:15  | Organic Fertilizers                                                 | Gnimiray/       |
|               | <ul> <li>Types of organic fertilizers</li> </ul>                    | Tenzin Wangchuk |
|               | <ul> <li>Properties of organic fertilizers</li> </ul>               |                 |
|               | <ul> <li>Benefits and limitations of organic fertilizers</li> </ul> |                 |
| 10:15 –11:45  | Break                                                               |                 |
| 11:45 - 13:00 | Composting                                                          | Mahesh          |
|               | Process of composting                                               | Ghimiray/       |

|              | <ul> <li>Composting techniques</li> <li>Use of compost in organic farming</li> <li>Crop Rotation and Nutrient Management Plan</li> <li>Crop rotation and its role in nutrient management</li> <li>Nutrient management plan for organic farming</li> <li>Bio-fertilizers         <ul> <li>Importance</li> <li>Types</li> </ul> </li> </ul> | Tenzin Wangchuk                        |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 13:00 -14:00 | Lunch Break                                                                                                                                                                                                                                                                                                                               |                                        |
| 14:00 –17:00 | Field Work/practical on the cpus                                                                                                                                                                                                                                                                                                          | Mahesh<br>Ghimiray/<br>Tenzin Wangchuk |

| Time         | Day 4: Plant protection in OA                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|              | Recap from the previous day and reflection on key                                                                                                                                                                                                                                                                                                                                                                                                                   | Tenzin Wangchuk                 |
| 09:00 –9:15  | insights                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 09:15 –10:15 | <ul> <li>Weeds, Plant Pests and Diseases <ul> <li>Identification of common weeds, pests and diseases in crops</li> <li>Life cycles and habits of weeds, pests and diseases</li> <li>Understanding pest and disease epidemiology</li> </ul> </li> <li>Biological Control Agents <ul> <li>Introduction to biological control agents</li> <li>Types of biological control agents</li> <li>Benefits and limitations of biological control agents</li> </ul> </li> </ul> | Ongpo Lepcha/<br>Karma Wangchuk |
| 10:15 –11:45 | Break                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| 11:45 –12:15 | <ul> <li>Crop Rotation and Intercropping</li> <li>Crop rotation and its role in pest management</li> <li>Intercropping and its role in pest management</li> <li>Benefits and limitations of crop rotation and intercropping</li> </ul>                                                                                                                                                                                                                              | Ongpo Lepcha/<br>Karma Wangchuk |
| 12:15 -03:00 | Plant Protection Plan and Methods                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ongpo Lepcha                    |
| 13:00 -14:00 | Lunch Break                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
| 14:00 –17:00 | Field Work/practical on the cpus                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ongpo Lepcha/<br>Karma Wangchuk |

| Time          | Day 5: Field visit and closure                   |                                     |
|---------------|--------------------------------------------------|-------------------------------------|
| 09:00 –15:45  | Visit nearby OA farm and interact with farmers   | Tenzin<br>Wangchuk/<br>Ongpo Lepcha |
| 15:45 –16:00  | Break                                            |                                     |
| 16:00 –16: 40 | Certificate Distribution and Feedback/evaluation | Tenzin Wangchuk                     |
| 16:40 -17:00  | Closing Ceremony                                 | Tenzin Wangchuk                     |

| Mater | ials                                     |
|-------|------------------------------------------|
| 1.    | Training venue                           |
| 2.    | Training materials                       |
| 3.    | Audio-visual equient                     |
| 4.    | Flip charts and markers                  |
| 5.    | Guest speakers                           |
| 6.    | Evaluation forms                         |
| 7.    | Certificates                             |
| 8.    | Refreshments                             |
| 9.    | Travel and accommodation (if applicable) |

#### **Reading Materials**

- DoA. (2018). Sustainable Socio-economic develoent through commercialization of organic farming. MoAF, ARDC Yusipang, Thimphu, Yusipang.
- FAO. (2018). Transforming food and agriculture to achieve the SDGs: 20 interconnected actions to guide decision makers. Rome, Italy, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001328.
- FiBL-IFO (2021). Organics International 2021: The World of Organic Agriculture. Frick and Bonn, Germany
- ICIMOD and MoAF (2018). Organic agriculture develoent strategies: Roadmap for 12th Five Year Plan and Beyond. Nepal, Kathmandu: ICIMOD.
- Ministry of Agriculture and Forests. (2019). Bhutan Organic Guarantee System (BOGS). Bhutan, Thimphu: National Organic Progr.
- Ministry of Agriculture and Forests. (2019). Bhutan Organic Standard (BOS). Bhutan, Thimphu: National Organic Progr.
- Ministry of Agriculture and Forests. (2020). Training manual: Internal Control System (ICS). Bhutan,Thimphu: National Centre for Organic Agriculture.
- Schaetzen de, S. (2019). Organic agriculture and the sustainable develoent goals: Part of the solution.

Scialabba, N. (Ed.). (2015). Training manual for organic agriculture. FAO, Italy, Rome.





# Training Three: Community-Based Forestry for Conservation and Livelihoods

| Course Director | : Ugyen Dorji (ugyen.cnr@rub.edu.bt) |
|-----------------|--------------------------------------|
| Duration        | : One week                           |

#### Training overview

The week-long training on Community-based forestry for conservation and livelihoods is designed to provide participants with a comprehensive understanding of community-based forestry principles and practices including the best cases from Bhutan. The training will equip participants with the skills and knowledge to develop and implement community-based forestry for projects in their own countries or regions towards conservation and improvement of livelihoods.

#### Learning outcomes

On the completion of the training, participants will be able to:

- 1. Explain the principles of community-based forestry for conservation and livelihoods.
- 2. Analyze best cases from Bhutan community-based forestry and initiatives.
- 3. Design and implement community-based forest management.
- 4. Identify the key stakeholders in the develoent and implementation of plans and activities.
- 5. Identify appropriate tools, methods, and techniques to facilitate participation in community-based forest management.
- 6. Develop a plan to sustain and scale up the impact of community-based forestry projects.

|              | Day 1: Introduction to community-based     | Facilitator(s)                       |
|--------------|--------------------------------------------|--------------------------------------|
| Time         | forestry management                        |                                      |
|              | Registration and welcome, opening, setting | Dr. Ugyen Dorji/ Dr.                 |
| 08:45 –9:15  | the stage and participants introduction    | Yonten Dorji                         |
|              |                                            | Dr. Ugyen Dorji/ Dr.                 |
| 09:15 –10:15 | Introduction to community forestry         | Yonten Dorji                         |
| 10:15 –11:45 | Break                                      |                                      |
| 10:45 -13:00 | Overview of community forestry principles  | Dr. Ugyen Dorji/ Dr.<br>Yonten Dorii |
| 13:00 -14:00 | Lunch break                                |                                      |
| 14:00 –15:00 | Overview of community forestry principles  | Dr. Ugyen Dorji/ Dr.<br>Yonten Dorii |
| 15:00 –15:15 | Break                                      |                                      |
| 15:15 –15:15 | Guest speaker session: experience sharing  | Guest Speaker                        |

|              | on community-based conservation and livelihoods projects |              |
|--------------|----------------------------------------------------------|--------------|
|              | Discussion of the challenges and                         | Participants |
| 15:15 –17:00 | opportunities in community-based forestry                |              |

|               | Day 2: Community forestry management       |                      |
|---------------|--------------------------------------------|----------------------|
| Time          | plans                                      |                      |
|               | Recap from the previous day and reflection | Dr. Ugyen Dorji/ Dr. |
| 09:00 –9:15   | on key insights                            | Yonten Dorji         |
|               | Overview of community forestry             | Dr. Ugyen Dorji/ Dr. |
| 09:15 –10:15  | management plans                           | Yonten Dorji         |
| 10:15 –11:45  | Break                                      |                      |
|               |                                            | Dr. Ugyen Dorji/ Dr. |
| 10:45 –12:00  | Identification stage                       | Yonten Dorji         |
|               |                                            | Dr. Ugyen Dorji/ Dr. |
| 12:00 - 13:00 | Planning stage                             | Yonten Dorji         |
| 13:00 –14:00  | Lunch break                                |                      |
|               | Implementation stage including monitoring  | Dr. Ugyen Dorji/ Dr. |
| 14:00 –15:00  | & evaluation                               | Yonten Dorji         |
| 15:00 –15:15  | Break                                      |                      |
|               |                                            | Dr. Ugyen Dorji/ Dr. |
| 15:15 –17:00  | Financial and technical guidelines         | Yonten Dorji         |

| Time          | Day 3: Experiential learning-visit and<br>learn from local forestry management<br>projects |                      |
|---------------|--------------------------------------------------------------------------------------------|----------------------|
|               |                                                                                            | Dr. Ugyen Dorji/ Dr. |
| 08:00 -8:30   | Report to the departure point                                                              | Yonten Dorji         |
|               | Visit to community forest and interacting                                                  | Participants         |
|               | with community management group in                                                         |                      |
| 08: 30 –17:00 | Punakha district                                                                           |                      |

| Time          | Day 4: Experiential learning-visit and<br>learn from local forestry management<br>projects |              |
|---------------|--------------------------------------------------------------------------------------------|--------------|
| 08:00 -8:30   | Report to the departure point                                                              |              |
|               | Visit to community forest and interacting with community management group in               | Participants |
| 08: 30 –17:00 | Tsirang district                                                                           |              |

| Time         | Day 5: Developing community forestry<br>management plans |                      |
|--------------|----------------------------------------------------------|----------------------|
|              | Reflection on key field visit to community               | Dr. Ugyen Dorji/ Dr. |
| 09:00 –9:15  | forest                                                   | Yonten Dorji         |
|              | Establishing the legal and institutional                 | Dr. Ugyen Dorji/ Dr. |
| 09:15 –10:15 | frework                                                  | Yonten Dorji         |
| 10:15 –11:45 | Break                                                    |                      |

| 10:45 - 13:00 | Setting up a community forest management      | Dr. Ugyen Dorji/ Dr.<br>Yonten Dorii |
|---------------|-----------------------------------------------|--------------------------------------|
| 13:00 -14:00  | Lunch break                                   |                                      |
| 14:00 –15:00  | Setting up a community forest management plan | Dr. Ugyen Dorji/ Dr.<br>Yonten Dorji |
| 14.00 - 15.15 | Break                                         |                                      |
| 17.00 - 10.10 | Broan                                         |                                      |
| 15:15 –16:15  | Developing an inventory of forest resources   | Dr. Ugyen Dorji/ Dr.<br>Yonten Dorji |

|               | Day 6: Planning workshop-developing                        |                 |
|---------------|------------------------------------------------------------|-----------------|
| Time          | community forestry management plans                        |                 |
| 09:00 –9:15   | Recap from the previous day and reflection on key insights | Participants    |
| 09:15 –10:15  | Developing monitoring and evaluation                       | Dr. Thubten Son |
| 10:15 –11:45  | Break                                                      |                 |
| 10:45 - 12:00 | Developing a conflict resolution mechanism                 | Dr. Thubten Son |
| 12:00 –13:00  | Developing a resource management system                    | Dr. Thubten Son |
| 13:00 - 14:00 | Lunch break                                                |                 |
| 14:00 - 15:00 | Presentation                                               | Participants    |
| 15:00 –15:15  | Break                                                      |                 |
| 15:15 –16:15  | Presentation                                               | Participants    |
|               | Farewell and certificate distribution                      |                 |
| 16:15 –17:00  | closing                                                    |                 |

| Time         | Day 7: Cultural visit           |                      |
|--------------|---------------------------------|----------------------|
|              |                                 | Dr. Ugyen Dorji/ Dr. |
| 09:00 –17:00 | Cultural visit to nearby places | Yonten Dorji         |

- 1. College lecture theatre will be used as the space and facilities are adequate to accommodate participants, trainers, and equient.
- 2. Training materials required will include handouts, community-based conservation manuals, and other relevant training materials, including copies of case studies, regulations, and other reference documents.
- 3. Audio-visual equient will include projectors, screens, microphones, and speakers for presentations and group discussions.
- 4. Flip charts and markers will be needed to facilitate brainstorming and group activities.
- 5. Computers and Internet access will enable participants to conduct research and access online resources related to the training.
- 6. Evaluation forms will be made to assess the effectiveness of the training and obtain feedback from the participants.
- 7. Certificates will be awarded towards the end of training.

- 8. Refreshments such as snacks, meals, and beverages to sustain participants during the training.
- 9. Travel and accommodation for participants travelling from different locations, arrangements for their transportation and lodging will also be required.

#### Materials required

| Materials                         |
|-----------------------------------|
| 10. Training venue                |
| 11. Training materials            |
| 12. Audio-visual equient          |
| 13. Flip charts and markers       |
| 14. Computers and Internet access |
| 15. Guest speakers                |
| 16. Evaluation forms              |
| 17. Certificates                  |
| 18. Refreshments                  |
| 19. Travel and accommodation      |

#### **Reading Materials**

- Berkes, F. (1989). Common property resources: Ecology and community-based sustainable *develoent*. Belhaven Press with the International Union for Conservationof Nature and Natural Resources.
- Department of Research and Develoent Services, MOAF. (2002). *Community-based natural resource management in Bhutan: A frework.* KuenselCorporation.
- Means, K. and Josayma, C. (2002). *Community –based forest resource conflict management: A training package*. Food and Agriculture Organisation of the United Nations.
- Menon, A., Singh, P., Shah, E., Lele, S., Paranjape, S. and Joy, K.J. (2007). *Community-based natural resource management: Issues and cases from South Asia*. Sage Publications India Pvt Ltd.
- Sundar, K.V., Moni, M. and Jha, M.M. (2004). *Natural resources management and livelihood security: Survival strategies and sustainable policies*. Concept Publishing Company





# Training Four: Biodiversity Conservation Techniques

| Course Director | : Ugyen Dorji (ugyen.cnr@rub.edu.bt) |
|-----------------|--------------------------------------|
| Duration        | : One week                           |

#### Training overview

A week-long training will focus on techniques for biodiversity conservation. The training will have a practical, hands-on approach and will cover various aspects of conservation science, including the use of modern techniques like cera traps, remote sensing, drones, and citizen science. The training will also cover the study of different wildlife species, including mmals, avian, herpetofauna, aquatic, and invertebrates and will include fieldwork to conduct surveys and collect data. Additionally, there will be a section on ethnobotany, which will involve field surveys and interviews with local communities to document traditional knowledge and use of plants.

#### Learning outcomes

On completion of the training, participants will be able to:

- 1. Explain the importance of biodiversity conservation and the challenges faced in protecting endangered species and their habitats.
- 2. Demonstrate filiarity with modern techniques used in conservation biology such as setting up cera traps, retrieving data, and analyzing data;
- 3. Identify the characteristics of different wildlife species, including mmals, avian, herpetofauna, aquatic, and invertebrates.
- 4. Demonstrate practical skills in conducting surveys and collecting data for different wildlife species.
- 5. Analyze the cultural significance of plants in local communities and interpret their role in rituals and traditions.

| Time         | Day 1: Fundentals and modern techniques                                            | Facilitator(s)       |
|--------------|------------------------------------------------------------------------------------|----------------------|
| 08:45 –09:15 | Registration and welcome, opening, setting the stage and participants introduction | Mr. Ugyen Dorji      |
| 09:15 –10:15 | Introduction to biodiversity conservation                                          | Dr. Dhan Bdr. Gurung |
| 10:15 –11:45 | Break                                                                              |                      |
| 10:45 –12:00 | Modern techniques to conservation: cera traps                                      | Dr. Dhan Bdr. Gurung |
| 12:00 –13:00 | Remote sensing                                                                     | Dr. Dhan Bdr. Gurung |
| 13:00 –14:00 | Lunch break                                                                        |                      |

| 14:00 –14:30 | Drones                      | Dr. Dhan Bdr. Gurung |
|--------------|-----------------------------|----------------------|
| 14:30 –15:00 | Citizen science             | Dr. Dhan Bdr. Gurung |
| 15:00 –15:15 | Break                       |                      |
| 15:15 –15:45 | Molecular analysis          | Dr. Dhan Bdr. Gurung |
| 15:45 –16:15 | Acoustic monitoring         | Dr. Dhan Bdr. Gurung |
| 16:15 –16:45 | Transect                    | Dr. Dhan Bdr. Gurung |
| 16:45 –17:00 | Question and answer session |                      |

| Time         | Day 2: Conservation techniques for major biodiversity groups |                                          |
|--------------|--------------------------------------------------------------|------------------------------------------|
| Mmals        |                                                              | ·                                        |
| 09:00 –9:15  | Recap from the previous day and reflection on key insights   | Mr. Ugyen Dorji                          |
| 09:15 –10:15 | Live trapping and marking                                    | Mr. Sangay Tshering/<br>Mr. Karma Sherub |
| 10:15 –11:45 | Break                                                        |                                          |
| 10:45 –12:00 | Scat surveys                                                 | Mr. Sangay Tshering/<br>Mr. Karma Sherub |
| 12:00 –13:00 | Thermal imaging ceras                                        | Mr. Sangay Tshering/<br>Mr. Karma Sherub |
| 13:00 –14:00 | Lunch break                                                  |                                          |
| Avian        |                                                              |                                          |
| 14:00 –14:30 | Conducting point counts                                      | Mr. Sangay Tshering/<br>Mr. Karma Sherub |
| 14:30 –15:00 | Mist netting                                                 | Mr. Sangay Tshering/<br>Mr. Karma Sherub |
| 15:00 –15:15 | Break                                                        |                                          |
| 15:15 –15:45 | Radio telemetry                                              | Mr. Sangay Tshering/<br>Mr. Karma Sherub |
| 15:45 –16:15 | Bird banding                                                 | Mr. Sangay Tshering/<br>Mr. Karma Sherub |
| Aquatic      |                                                              |                                          |
| 16:15 –16:45 | Fish spling methods                                          | Mr. Ugyen Dorji                          |
| 16:45 –17:30 | Macroinvertebrate spling methods                             | Mr. Ugyen Dorji                          |

| Time         | Day 3: Conservation techniques for<br>major biodiversity groups   |                      |
|--------------|-------------------------------------------------------------------|----------------------|
| 09:00 –9:15  | Recap from the previous day and reflection on key insights        | Participants         |
| Herpetofauna |                                                                   |                      |
| 09:15 –10:15 | phibian spling methods: visual surveys, traps, mark and recapture | Dr. Dhan Bdr. Gurung |
| 10:15 –11:45 | Break                                                             |                      |
| 11:45 –13:00 | Reptile spling methods: visual surveys,                           | Dr. Dhan Bdr. Gurung |

|               | traps, mark and recapture                                                                                            |                                       |
|---------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 13:00 -14:00  | Lunch break                                                                                                          |                                       |
| Invertebrates |                                                                                                                      |                                       |
| 14:00 –14:30  | Pitfall trap surveys, sweep net, hand collecting                                                                     | Mr. Karma Wangdi/ Mr.<br>Ongpo Lepcha |
| 14:30 –15:00  | Baited trap, light trap surveys to collect<br>nocturnal invertebrates such as moths and<br>beetles and other methods | Mr. Karma Wangdi/ Mr.<br>Ongpo Lepcha |
| 15:00 –15:15  | Break                                                                                                                |                                       |
| Ethnobotany   |                                                                                                                      |                                       |
| 15:15 –16:00  | Field surveys                                                                                                        | Dr. Dhan Bdr. Gurung                  |
| 16:00 –17:00  | Conducting interviews with local communities and participatory mapping                                               | Dr. Dhan Bdr. Gurung                  |
| 17:00 –17:30  | Group discussion and field work briefing                                                                             | Mr. Ugyen Dorji                       |

| Time          | Day 4: Experiential learning-field work<br>on surveying major biodiversity groups |                 |
|---------------|-----------------------------------------------------------------------------------|-----------------|
| 08:00 -8:30   | Report to the departure point                                                     | Mr. Ugyen Dorji |
| 08: 30 –17:00 | Field work on specific group of biodiversity                                      | Participants    |

| Time         | Day 5: Experiential learning-field work<br>on surveying major biodiversity groups |              |
|--------------|-----------------------------------------------------------------------------------|--------------|
| 09:00 –17:00 | Field work on specific group of biodiversity                                      | Participants |

| Time         | Day 6: Experiential learning-field work<br>on surveying major biodiversity groups |              |
|--------------|-----------------------------------------------------------------------------------|--------------|
| 09:00 –17:00 | Field work on specific group of biodiversity                                      | Participants |

| Time          | Day 7: Discussion and wrap up                          |                 |
|---------------|--------------------------------------------------------|-----------------|
| 09:00 –9:15   | Reflection on key field visit                          |                 |
| 09:15 –10:15  | Panel discussion with experts on major<br>biodiversity | Field Experts   |
| 10:15 –11:45  | Break                                                  |                 |
| 10:45 –12:00  | Panel discussion with experts on major<br>biodiversity | Field Experts   |
| 12:00 –13:00  | Group presentation on findings from field<br>survey    | Participants    |
| 13:00 -14:00  | Lunch break                                            |                 |
| 14:00 –15:45  | Group presentation on findings from field survey       | Participants    |
| 15:45 –16:00  | Break                                                  |                 |
| 16:00 –16: 40 | Certificate distribution and feedback/evaluation       | Mr. Ugyen Dorji |
| 16:40 –17:00  | Closing ceremony                                       |                 |

| Time         | Day 8: Cultural visit           |                 |
|--------------|---------------------------------|-----------------|
| 09:00 –17:00 | Cultural visit to nearby places | Mr. Ugyen Dorji |

- 1. College lecture theatre will be used as the space and facilities are adequate to accommodate participants, trainers, and equient.
- 2. Training materials required will include handouts, community-based conservation manuals, and other relevant training materials, including copies of case studies, regulations, and other reference documents.
- 3. Audio-visual equient will include projectors, screens, microphones, and speakers for presentations and group discussions.
- 4. Flip charts and markers will be needed to facilitate brainstorming and group activities.
- 5. Computers and Internet access will enable participants to conduct research and access online resources related to the training.
- 6. Evaluation forms will be made to assess the effectiveness of the training and obtain feedback from the participants.
- 7. Certificates will be awarded towards the end of training.
- 8. Refreshments such as snacks, meals, and beverages to sustain participants during the training.
- 9. Travel and accommodation for participants travelling from different locations, arrangements for their transportation and lodging will also be required.

#### **Reading Materials**

- Buckland, S.T., Anderson, D.R., Burnh, K.P., Laake, J.L., Borchers, D.L. and Thomas, L. (2001). *Introduction to Distance Spling: Estimating*. UK: Oxford University Press.
- Caughly, G. and Sinclair, A.R.E. (1994). *Wildlife Ecology and Management*. UK: Blackwell Scientific Publications, Oxford.
- Kays, R. W., & Slauson, K. M. (2019). Remote ceras. In Cera traps in animal ecology (pp. 21-53). Springer, Ch.
- Lindenmayer, D. B., & Likens, G. E. (2018). Effective ecological monitoring. CSIRO Publishing.
- Morrison M.L., Block, W.M., Strickland, M.D., and Kendall, W.L. (2001). *Wildlife Study Design*. New York: Springer-Verlag,
- Sinclair, A. R. E., J. M. Fryxell and G. Caughley. (2006). *Wildlife ecology, conservation and management*. Malden, MA: Blackwell Science.
- Swann, D. E. (2015). Recommended guiding principles for reporting on cera trapping research. Biodiversity and Conservation, 24(1), 253-264.





## Training Five: Climate-smart Agriculture using Geospatial Technologies

Training Director: Dr. Ugyen Thinley (uthinley.cnr@rub.edu.bt)Training duration: Ten Days

#### **Training objectives**

The 10-day training will focus on Climate-smart agriculture technologies and integrating geospatial technologies to make farms resilient and sustainable. The training will have an extended period of practical exercise on data collection, spatial analysis, and mapping of climate risks, vulnerabilities and opportunities. The practical exercise will also focus on land use planning.

## Learning outcomes

At the end of the training, the participants will be able to:

- 1. Describe concepts and principles of CSA.
- 2. Explain different CSA technologies and practices.
- 3. Design CSA practices using Geographic Information System.
- 4. Acquire remotely sensed datasets from open sources such as Google Earth Engine, Earth explorer etc.
- 5. Carry out a CSA based project using GIS and remote sensing.

| Time         | Day 1: Introduction to Climate-smart<br>Agriculture                                | Facilator     |
|--------------|------------------------------------------------------------------------------------|---------------|
| 08:45 –09:15 | Registration and welcome, opening, setting the stage and participants introduction | Son Tshering  |
| 09:15 –10:15 | Impacts of climate change on agriculture                                           | Dr. Son Tashi |
| 10:15 –11:45 | Break                                                                              |               |
| 10:45 –12:00 | Building farm resilience through Climate-<br>smart agriculture practices           | Dr. Son Tashi |
| 12:00 -13:00 | CSA practices in Bhutan                                                            | Dr. Son Tashi |
| 13:00 –14:00 | Lunch Break                                                                        |               |
| 14:00 –16:45 | CSA farm visit                                                                     | Dr. Son Tashi |
| 16:45 –17:00 | Question and answer session                                                        | Dr. Son Tashi |

| Time         | Day 2: Integrating GIS in CSA                                                                   | Dr. Ugyen Thinley |
|--------------|-------------------------------------------------------------------------------------------------|-------------------|
| 09:00 -9:15  | Introduction to GIS and ArcGIS software<br>Interface (Inform participants about the<br>project) | Dr. Ugyen Thinley |
| 09:15 –10:15 | Data Display and Data retrieval                                                                 | Dr. Ugyen Thinley |
| 10:15 –11:45 | Break                                                                                           |                   |
| 10:45 –13:00 | Map symbolization-charts, dots, colour rp, etc.                                                 | Dr. Ugyen Thinley |
| 13:00 –14:00 | Lunch Break                                                                                     |                   |
| 14:00 -17:00 | Cartography-designing a printable map                                                           | Dr. Ugyen Thinley |

| Time          | Day 3: Data Processing using<br>Geoprocessing Tools               | Mr. Ugyren Dorji |
|---------------|-------------------------------------------------------------------|------------------|
| 09:00 –10.15  | Data processing-extraction, combination, and transformation       | Mr. Ugyren Dorji |
| 10:15 –11:45  | Break                                                             |                  |
| 11:45 –12:40  | Feature Geometry Calculations-area, perimeter, volume and heights | Mr. Ugyren Dorji |
| 12: 40 –13:00 | 3D Result visualization in ArcScence                              | Mr. Ugyren Dorji |
| 13:00 –14:00  | Lunch Break                                                       |                  |
| 14:00 –17:00  | 3D Result visualization in ArcScence                              | Mr. Ugyren Dorji |

|              |                                           | Dr. Ugyen Thinley/ Mr. Ugyren |
|--------------|-------------------------------------------|-------------------------------|
| Time         | Day 4: Geospatial Data Collection         | Dorji                         |
|              |                                           | Dr. Ugyen Thinley/ Mr. Ugyren |
| 09:00 –9:15  | Demonstration on GPS handset usage        | Dorji                         |
|              |                                           | Dr. Ugyen Thinley/ Mr. Ugyren |
| 09:15 –10:15 | GPS survey within the cpus                | Dorji                         |
|              |                                           |                               |
| 10:15 –11:45 | Break                                     |                               |
|              |                                           | Dr. Ugyen Thinley/ Mr. Ugyren |
| 11:45 –13:00 | GPS survey within the cpus cont.          | Dorji                         |
|              | <u>-</u> .                                |                               |
| 13:00 -14:00 | Lunch Break                               |                               |
|              |                                           | Dr. Ugyen Thinley/ Mr. Ugyren |
| 14:00 –17:00 | GPS data integration to GIS               | Dorji                         |
|              | Day 5: Brief Introduction to Remote       |                               |
| Time         | Sensing                                   |                               |
|              |                                           | Dr. Ugyen Thinley             |
| 09:00 -9:15  | Concepts of Remote Sensing                |                               |
|              |                                           | Dr. Ugyen Thinley/ Mr. Ugyren |
| 09:15 –10:15 | Supervised Landsat 8 Image Classification | Dorji                         |

| 10:15 –11:45 | Break                                                                   |                                        |
|--------------|-------------------------------------------------------------------------|----------------------------------------|
| 11:45 –12:15 | Supervised Landsat 8 Image Classification cont.                         | Dr. Ugyen Thinley/ Mr. Ugyren<br>Dorji |
| 12:15 –13:00 | Accuracy Assessment of Classified Image                                 | Dr. Ugyen Thinley/ Mr. Ugyren<br>Dorji |
| 13:00 -14:00 | Lunch Break                                                             |                                        |
| 14:00 –05:00 | Accuracy Assessment of Classified Image                                 | Dr. Ugyen Thinley/ Mr. Ugyren<br>Dorji |
| Time         | Day 6: Introduction to GIS modelling Techniques                         | -                                      |
| 09:00 –9:15  | Introduction to Weighted Overlay and its roles in Suitability Modelling | Dr. Ugyen Thinley/ Mr. Ugyren<br>Dorji |
| 09:15 –10:15 | Exercise on the Weighted Overlay using real data                        | Dr. Ugyen Thinley/ Mr. Ugyren<br>Dorji |
| 10:15 –11:45 | Break                                                                   | •                                      |
| 11:45 –13:00 | Exercise on the Weighted Overlay using real data cont.                  | Dr. Ugyen Thinley/ Mr. Ugyren<br>Dorji |
| 13:00 –14:00 | Lunch Break                                                             |                                        |
| 14:00 –17:00 | Introduction to Fuzzy Overlay and its roles in Suitability Modelling    | Dr. Ugyen Thinley/ Mr. Ugyren<br>Dorji |

| Time          | Day 7: Introduction to GIS modelling Techniques cont. | Dr. Ugyen Thinley/ Mr. Ugyren<br>Dorji |
|---------------|-------------------------------------------------------|----------------------------------------|
|               | Introduction to Fuzzy Overlay and its roles           | Dr. Ugyen Thinley/ Mr. Ugyren          |
| 09:00 –9:15   | in Suitability Modelling cont.                        | Dorji                                  |
|               |                                                       | Dr. Ugyen Thinley/ Mr. Ugyren          |
| 09:15 –10:15  | Exercise on Fuzzy Overlay using real data             | Dorji                                  |
| 10.15 11.45   | Prook                                                 |                                        |
| 10.15 - 11.45 | Dieak                                                 |                                        |
|               | Exercise on Fuzzy Overlay using real data             | Dr. Ugyen Thinley/ Mr. Ugyren          |
| 11:45 -01:00  | cont.                                                 | Dorji                                  |
|               |                                                       |                                        |
| 13:00 -14:00  | Lunch Break                                           |                                        |
|               | Introduction to Predictive Modeling-                  | Dr. Ugyen Thinley                      |
|               | Interpolation and Machine Learning                    |                                        |
| 14:00 - 17:00 | Algorithms                                            |                                        |

| Time         | Day 8: Implementation of CSA practices using GIS |                   |
|--------------|--------------------------------------------------|-------------------|
|              | Exercise on Different Interpolation              | Dr. Ugyen Thinley |
| 09:00 –9:45  | Techniques                                       |                   |
|              | Exercise on Machine learning algorithm-          | Dr. Ugyen Thinley |
| 09:45 –10:15 | Random Forest                                    |                   |
|              |                                                  |                   |
| 10:15 –11:45 | Break                                            |                   |

|              | Exercise on Machine learning algorithm- | Dr. Ugyen Thinley |
|--------------|-----------------------------------------|-------------------|
| 11:45 –12:10 | Random Forest                           |                   |
|              | Exercise on Machine learning algorithm- | Dr. Ugyen Thinley |
| 12:10 –13:00 | Support Vector Machine                  |                   |
|              |                                         |                   |
| 13:00 –14:00 | Lunch Break                             |                   |
|              | Demonstration on Maxent-Maximum         | Dr. Ugyen Thinley |
| 14:00 –17:00 | Entropy Model                           |                   |

| Time          | Day 9: Implementation of CSA practices using GIS cont.     |                                                    |
|---------------|------------------------------------------------------------|----------------------------------------------------|
| 09:00 –10:15  | Design CSA practice using a GIS modelling technique        | Dr. Ugyen Thinley                                  |
| 10:15 –11:45  | Break                                                      |                                                    |
| 10:45 –12:00  | Design CSA practice using a GIS modelling technique cont . | Dr. Ugyen Thinley                                  |
| 12:00 –13:00  | Poster designing                                           | Dr. Ugyen Thinley/Mr. Ugyen<br>Dorji               |
| 13:00 –14:00  | Lunch Break                                                |                                                    |
| 14:00 -15:45  | Poster designing                                           |                                                    |
| 15:45 –16:00  | Break                                                      |                                                    |
| 16:00 –17: 00 | Poster designing                                           | Dr. Ugyen Thinley                                  |
|               |                                                            |                                                    |
| Time          | Day 10: Implementation of CSA practices using GIS cont.    |                                                    |
| 09:00 –10:15  | Poster Presentation and Evaluation                         | Dr. Ugyen Thinley/Mr. Ugyen<br>Dorji               |
| 10:15 –11:45  | Break                                                      |                                                    |
| 10:45 –13:00  | Poster Presentation and Evaluation                         | Dr. Ugyen Thinley/Mr. Ugyen<br>Dorji               |
| 13:00 -14:00  | Lunch Break                                                |                                                    |
| 14:00 –15:45  | Training Wrap-up                                           | Dr. Son Tashi/Dr. Ugyen<br>Thinley/Mr. Ugyen Dorji |
| 15:45 - 16:00 | Break                                                      |                                                    |
| 16:00 –16: 40 | Training evaluation                                        |                                                    |
| 16:40 -17:00  | Training Closure                                           |                                                    |

ArcGIS software, QGIS software, GPS handsets, alkaline pencil batteries, satellite datasets (landsat, sentinel).

#### **Reading Materials**

- Ahmad, F., Farooq, A., Goparaju, L., & Rizvi, J. (2020). The Geospatial Understanding of Climate-Smart Agriculture and REDD+ Implementation: Indian Perspective. *Ekológia* (Bratislava), 39(1), 72-87.
- Faurès, J. M., Bartley, D., Bazza, M., Burke, J., Hoogeveen, J., Soto, D., & Steduto, P. (2013). *Climate smart agriculture sourcebook*. FAO, Rome, 557.
- Kazemi Garajeh, M., Salmani, B., Zare Naghadehi, S., Valipoori Goodarzi, H., & Khasraei, A. (2023). An integrated approach of remote sensing and geospatial analysis for modeling and predicting the impacts of climate change on food security. Scientific Reports, 13(1), 1057.
- Koley, M. S., & Jeganathan, C. (2030). *Geospatial Technology: the emerging global trend towards the new horizon of sustainable agriculture.*
- Mathenge, M., Sonneveld, B. G., & Broerse, J. E. (2022). Application of GIS in Agriculture in Promoting Evidence-Informed Decision Making for Improving Agriculture Sustainability: A Systematic Review. *Sustainability*, 14(16), 9974.
- Tenzin, J., Phuntsho, L., & Lakey, L. (2019). Climate smart agriculture: Adaptation & mitigation strategies to climate change in Bhutan. Climate Smart Agriculture:
   Strategies to Respond to Climate Change; Shrestha, RB, Boktiar, S., Eds, 37-61.